Toubeh, Maymoonah2024-10-242024-10-242024-10-23vt_gsexam:38825https://hdl.handle.net/10919/121380This dissertation addresses the challenge of robot decision making in the presence of uncertainty, specifically focusing on robot motion decisions in the context of deep learning-based perception uncertainty. The first part of this dissertation introduces a risk-aware framework for path planning and assignment of multiple robots and multiple demands in unknown environments. The second part introduces a risk-aware motion model for searching for a target object in an unknown environment. To illustrate practical application, consider a situation such as disaster response or search-and-rescue, where it is imperative for ground vehicles to swiftly reach critical locations. Afterward, an agent deployed at a specified location must navigate inside a building to find a target, whether it is an object or a person. In the first problem, the terrain information is only available as an aerial georeferenced image frame. Semantic segmentation of the aerial images is performed using Bayesian deep learning techniques, creating a cost map for the safe navigation ground robots. The proposed framework also accounts for risk at a further level, using conditional value at risk (CVaR), for making risk-aware assignments between the source and goal. When the robot reaches its destination, the second problem addresses the object search task using a proposed machine learning-based intelligent motion model. A comparison of various motion models, including a simple greedy baseline, indicates that the proposed model yields more risk-aware and robust results. All in all, considering uncertainty in both systems leads to demonstrably safer decisions.ETDenCreative Commons Attribution 4.0 InternationalUncertaintyRobot MotionDeep LearningRobot Motions that Mitigate UncertaintyDissertation