Mine, S.Alcaraz-Aunion, J. L.Andringa, S.Aoki, S.Argyriades, J.Asakura, K.Ashie, R.Berghaus, F.Berns, H.Bhang, H.Blondel, A.Borghi, S.Bouchez, J.Burguet-Castell, J.Casper, D.Catala, J.Cavata, C.Cervera, A.Chen, S. M.Cho, K. O.Choi, J. H.Dore, U.Espinal, X.Fechner, M.Fernandez, E.Fujii, Y.Fukuda, Y.Gomez-Cadenas, J. J.Gran, R.Hara, T.Hasegawa, M.Hasegawa, T.Hayato, Y.Helmer, R. L.Hiraide, K.Hosaka, J.Ichikawa, A. K.Iinuma, M.Ikeda, A.Ishida, T.Ishihara, K.Ishii, T.Ishitsuka, M.Itow, Y.Iwashita, T.Jang, H. I.Jeon, E. J.Jeong, I. S.Joo, K. K.Jover, G.Jung, C. K.Kajita, T.Kameda, J.Kaneyuki, K.Kato, I.Kearns, E.Kim, C. O.Khabibullin, M.Khotjantsev, A.Kielczewska, D.Kim, J. Y.Kim, S. B.Kitching, P.Kobayashi, K.Kobayashi, T.Konaka, A.Koshio, Y.Kropp, W.Kudenko, Y.Kuno, Y.Kurimoto, Y.Kutter, T.Learned, J.Likhoded, S.Lim, I. T.Loverre, P. F.Ludovici, L.Maesaka, H.Mallet, J.Mariani, CamilloMatsuno, S.Matveev, V. A.McConnel, K.McGrew, C.Mikheyev, S.Minamino, A.Mineev, O.Mitsuda, C.Miura, M.Moriguchi, Y.Moriyama, S.Nakadaira, T.Nakahata, M.Nakamura, K.Nakano, I.Nakaya, T.Nakayama, S.Namba, T.Nambu, R.Nawang, S.Nishikawa, K.Nitta, K.Nova, F.Novella, P.Obayashi, Y.Okada, A.Okumura, K.Oser, S. M.Oyama, Y.Pac, M. Y.Pierre, F.Rodriguez, A.Saji, C.Sakuda, M.Sanchez, F.Scholberg, K.Schroeter, R.Sekiguchi, M.Shiozawa, M.Shiraishi, K. K.Sitjes, G.Smy, M.Sobel, H.Sorel, M.Stone, J.Sulak, L.Suzuki, A.Suzuki, Y.Tada, M.Takahashi, T.Takenaga, Y.Takeuchi, Y.Taki, K.Takubo, Y.Tamura, N.Tanaka, M.Terri, R.T'Jampens, S.Tornero-Lopez, A.Totsuka, Y.Vagins, M. R.Whitehead, L.Walter, C. W.Wang, W.Wilkes, R. J.Yamada, S.Yamada, Y.Yamamoto, S.Yanagisawa, C.Yershov, N.Yokoyama, H.Yokoyama, M.Yoo, J.Yoshida, M.Zalipska, J.2018-01-102018-01-102008-02-011550-7998http://hdl.handle.net/10919/81651The atmospheric neutrino background for proton decay via p → e<sup>+</sup>&#960;<sup>0</sup> in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, 3.14×10<sup>5</sup> neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1,000 ton water Cherenkov detector (KT). The KT charged-current single p0 production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super–Kamiokande (SK) proton decay search. The obtained p → e<sup>+</sup>&#960;<sup>0</sup> background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is 1.63 <sup>+0.42</sup><sub>−0.33</sub> (stat.) <sup>+0.45</sup><sub>−0.51</sub> (syst.) (megaton-year)<sup>−1</sup>. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.13 pagesapplication/pdfenIn CopyrightAstronomy & AstrophysicsPhysics, Particles & FieldsPhysicsNUCLEON-DECAYSUPER-KAMIOKANDEPROTON-DECAYPERFORMANCETHRESHOLDFUTUREPI(0)Experimental study of the atmospheric neutrino backgrounds for p -> e(+)pi(0) searches in water Cherenkov detectorsArticle - RefereedPhysical Review Dhttps://doi.org/10.1103/PhysRevD.77.032003773Mariani, C [0000-0003-3284-4681]