Asiatico, Patricia Magistrado2021-06-082021-06-082021-06-07vt_gsexam:30947http://hdl.handle.net/10919/103691The purpose of this research was to investigate the potential application of additive friction stir deposition (AFSD) to repair corroded steel bridge members. AFSD is an emerging solid-state additive manufacturing (AM) technology with many advantageous qualities such as low porosity, low residual stresses, flexibility in material, and a high build rate allowing for large-scale deposits. Two parameters were studied to understand the quality of AFSD on corroded steel: surface roughness and surface cleanliness. Three rounds of depositions were done: AerMet100, a high-strength corrosion-resistant steel, deposited onto AISI 1018 plates, with varying degrees of section loss, sectioned from a bridge taken out-of-service; AISI 1018 steel deposited onto an A572 Gr. 50 plate with 12 holes of varying diameters and depths drilled into the plate to simulate surface roughness; and AISI 1018 steel deposited onto an A572 Gr. 50 plate with mill scale, corrosion, and an industrial three-coat bridge paint system. The repair quality of each deposition was studied using scanning electron microscopy, microhardness testing, and three-point bending. Results from these tests indicated the following: AFSD can sufficiently mix dissimilar steels and result in a fine-grained microstructure; depositing onto a rough surface appeared to aid bonding between the two materials with little to no adverse effects on the repair quality; and finally, depending on the chosen deposition parameters, AFSD can mix foreign surface material into the matrix or mechanically remove the bulk of the foreign surface material appearing to clean the surface during the deposition.ETDIn Copyrightadditive manufacturingcorrosionrepairThe Applicability of Additive Friction Stir Deposition for Bridge RepairThesis