Afzalan, Milad2020-07-092020-07-092020-06http://hdl.handle.net/10919/99317With the widespread adoption of smart meters in buildings, an unprecedented amount of high- resolution energy data is released, which provides opportunities to understand building consumption patterns. Accordingly, research efforts have employed data analytics and machine learning methods for the segmentation of consumers based on their load profiles, which help utilities and energy providers for customized/personalized targeting for energy programs. However, building energy segmentation methodologies may present oversimplified representations of load shapes, which do not properly capture the realistic energy consumption patterns, in terms of temporal shapes and magnitude. In this thesis, we introduce a clustering technique that is capable of preserving both temporal patterns and total consumption of load shapes from customers’ energy data. The proposed approach first overpopulates clusters as the initial stage to preserve the accuracy and merges the similar ones to reduce redundancy in the second stage by integrating time-series similarity techniques. For such a purpose, different time-series similarity measures based on Dynamic Time Warping (DTW) are employed. Furthermore, evaluations of different unsupervised clustering methods such as k-means, hierarchical clustering, fuzzy c-means, and self-organizing map were presented on building load shape portfolios, and their performance were quantitatively and qualitatively compared. The evaluation was carried out on real energy data of ~250 households. The comparative assessment (both qualitatively and quantitatively) demonstrated the applicability of the proposed approach compared to benchmark techniques for power time-series clustering of household load shapes. The contribution of this thesis is to: (1) present a comparative assessment of clustering techniques on household electricity load shapes and highlighting the inadequacy of conventional validation indices for choosing the cluster number and (2) propose a two-stage clustering approach to improve the representation of temporal patterns and magnitude of household load shapes.ETDenCreative Commons Attribution-NoDerivatives 4.0 InternationalClusteringUnsupervised learningSegmentationSmart girdEnergy consumptionBuilding Energy Profile Clustering Based on Energy Consumption PatternsThesis