Mohanty, Vikram2023-08-312023-08-312023-08-30vt_gsexam:38416http://hdl.handle.net/10919/116169Identifying individuals in historical photographs is important for preserving material culture, correcting historical records, and adding economic value. Historians, antiques dealers, and collectors often rely on manual, time-consuming approaches. While Artificial Intelligence (AI) offers potential solutions, it's not widely adopted due to a lack of specialized tools and inherent inaccuracies and biases. In my dissertation, I address this gap by combining the complementary strengths of human intelligence and AI. I introduce Photo Sleuth, a novel person identification pipeline that combines crowdsourced expertise with facial recognition, supporting users in identifying unknown portraits from the American Civil War era (1861--65). Despite successfully identifying numerous unknown photos, users often face the `last-mile problem' --- selecting the correct match(es) from a shortlist of high-confidence facial recognition candidates while avoiding false positives. To assist experts, I developed Second Opinion, an online tool that employs a novel crowdsourcing workflow, inspired by cognitive psychology, effectively filtering out up to 75% of facial recognition's false positives. Yet, as AI models continually evolve, changes in the underlying model can potentially impact user experience in such crowd--expert--AI workflows. I conducted an online study to understand user perceptions of changes in facial recognition models, especially in the context of historical person identification. Our findings showed that while human-AI collaborations were effective in identifying photos, they also introduced false positives. To reduce these misidentifications, I built Photo Steward, an information stewardship architecture that employs a deliberative workflow for validating historical photo identifications. Building on this foundation, I introduced DoubleCheck, a quality assessment framework that combines community stewardship and comprehensive provenance information, for helping users accurately assess photo identification quality. Through my dissertation, I explore the design and deployment of human-AI collaborative tools, emphasizing the creation of sustainable online communities and workflows that foster accurate decision-making in the context of historical photo identification.ETDenCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalHuman-Computer InteractionCrowdsourcingHuman-AI CollaborationFacial RecognitionHistorical Photo IdentificationOnline CommunitiesDigital HumanitiesDesigning Human-AI Collaborative Systems for Historical Photo IdentificationDissertation