Spencer, Joseph Andrew2024-06-042024-06-042024-06-03vt_gsexam:40376https://hdl.handle.net/10919/119244At the heart of all power electronic systems lies the semiconductor, responsible for passing large amounts of current at negligible power losses in the on-state, while instantaneously switching to withstand high voltages in the off-state. For decades silicon (Si) has dominated nearly all aspects of electronic systems including power. As importunity for efficiency at higher power and fast switching speeds grows, the environments with which these systems are being tasked to operate in has also increased in rigor. This has placed semiconductors at the forefront of innovation as novel materials are being explored in hopes of meeting the demands for the future of power electronics. This exploration of novel materials for power electronics has come to fruition as the performance limits of narrow bandgap (EG) materials such as Si (1.1 eV) have been reached. The EG is a key measure of a materials ability to operate at high voltages and within high temperature environments. This is due to the direct relationship of the EG to the critical field strength which enables increased performance beyond that of narrow band gap materials such as Si and gallium arsenide. Wide bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN) with EG 3.3 eV and 3.4 eV, respectively, have emerged within the power electronics field to offer increased breakdown voltages (VBR) at lower on-resistances. However, ultrawide bandgap (UWBG) devices possess greater potential with superior performance limits in comparison to SiC and GaN. Ga2O3 (4.8 eV) is the only UWBG semiconductor with melt-growth capabilities that has already demonstrated research grade wafers up to 6" in diameter. Ga2O3 is also advantaged by the ability to grow thick, lowly-doped homoepitaxial drift regions from methods such as halide vapor phase epitaxy (HVPE) and metal organic chemical vapor deposition (MOCVD). This makes Ga2O3 a prime candidate for vertical power rectifiers as thick, high quality drift regions are a necessity for high voltage devices such as the PN diode, junction barrier Schottky (JBS) diode, merged-PiN-Schottky (MPS) diode, and Schottky barrier diode (SBD). However, Ga2O3 exhibits a lack of p-type conductive that arises from an absence of dispersion within the valence band maximum. This has caused researchers to abandon the idea of homojunction devices that Si, SiC, and GaN devices benefit from; shifting to a heterojunction approach where NiO (3.7 eV) provides the source of p-type conductivity. This complicates fabrication and device characterization particularly for the Ga2O3 JBS diode where an etched Ga2O3-NiO heterojunction has thus far been unreported throughout the literature. This work investigates the numerous individual aspects that comprise an etched Ga2O3 heterojunction device which include the etching method, post etch damage removal and its impact on electrical performance, and ohmic and Schottky contacts critical for a JBS diode; all culminating in the demonstration of a JBS and MPS diodes. We also report our investigations into co-doping of Ga2O3 that yield degenerately doped epitaxial layers with record mobility (μ) values. While not directly correlated with Ga2O3-NiO heterojunction devices, this study lays the ground work for semi-insulating Ga2O3 depletion into unintentionally doped (UID) n-type Ga2O3.ETDenIn Copyrightgallium oxideultrawide bandgapheterojunctionnickel oxidevertical rectifiersEpitaxial Gallium Oxide Heterojunctions for Vertical Power RectifiersDissertation