Chen, L.Gibney, A.Heller, L.Kalashnikov, E.Larson, H.Xu, W.2024-02-192024-02-192022-08-161083-4362https://hdl.handle.net/10919/118054We consider a conjecture that identifies two types of base point free divisors on M ¯ ,n. The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on M ¯ ,n to the same statement for n = 4. A reinterpretation leads to a proof of the conjecture on M ¯ ,n for a large class, and we give sufficient conditions for the non-vanishing of these divisors.30 page(s)application/pdfenCreative Commons Attribution 4.0 InternationalModuli of curvesCoinvariants and conformal blocksAffine Lie algebrasGromov-Witten invariantsEnumerative problemsSchubert calculusGrassmanniansOn an Equivalence of Divisors on (M)over-bar(0,n) from Gromov-Witten Theory and Conformal BlocksArticle - RefereedTransformation Groupshttps://doi.org/10.1007/s00031-022-09752-6Xu, Weihong [0000-0003-0990-5327]1531-586X