Amey, Dorothy Mae2016-05-232016-05-231969http://hdl.handle.net/10919/71017Given the prime power factorization of a positive integer m, a method for calculating the number of all distinct n x n - involutory matrices (mod m) is derived. This is done by first developing a method for the construction and enumeration of involutory matrices (mod P<sup>α</sup>), without duplication, for each prime power modulus P<sup>α</sup>. Using these results, formulas for the number of distinct involutory matrices (mod P<sup>α</sup>) of order n are given where p is an odd prime, p=2, α= 1 and α > 1. The concept of a fixed group associated with an involutory matrix (mod P<sup>α</sup>) is used to characterize such matrices. Involutory matrices (mod P<sup>α</sup>) of order n are considered as linear transformations on a vector space of n-tuples to provide uncomplicated proofs for the basic results concerning involutory matrices over a finite field.iii, 51 leaves.application/pdfen-USIn CopyrightLD5655.V855 1969.A45MatricesInvolutory matrices, modulo mThesis