Vahidi, MiladShafian, SanazThomas, SummerMaguire, Rory O.2024-02-012024-02-012023-12-13Vahidi, M.; Shafian, S.; Thomas, S.; Maguire, R. Pasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep Learning. Remote Sens. 2023, 15, 5714.https://hdl.handle.net/10919/117806The continuous assessment of grassland biomass during the growth season plays a vital role in making informed, location-specific management choices. The implementation of precision agriculture techniques can facilitate and enhance these decision-making processes. Nonetheless, precision agriculture depends on the availability of prompt and precise data pertaining to plant characteristics, necessitating both high spatial and temporal resolutions. Utilizing structural and spectral attributes extracted from low-cost sensors on unmanned aerial vehicles (UAVs) presents a promising non-invasive method to evaluate plant traits, including above-ground biomass and plant height. Therefore, the main objective was to develop an artificial neural network capable of estimating pasture biomass by using UAV RGB images and the canopy height models (CHM) during the growing season over three common types of paddocks: Rest, bale grazing, and sacrifice. Subsequently, this study first explored the variation of structural and color-related features derived from statistics of CHM and RGB image values under different levels of plant growth. Then, an ANN model was trained for accurate biomass volume estimation based on a rigorous assessment employing statistical criteria and ground observations. The model demonstrated a high level of precision, yielding a coefficient of determination (R<sup>2</sup>) of 0.94 and a root mean square error (RMSE) of 62 (g/m<sup>2</sup>). The evaluation underscores the critical role of ultra-high-resolution photogrammetric CHMs and red, green, and blue (RGB) values in capturing meaningful variations and enhancing the model’s accuracy across diverse paddock types, including bale grazing, rest, and sacrifice paddocks. Furthermore, the model’s sensitivity to areas with minimal or virtually absent biomass during the plant growth period is visually demonstrated in the generated maps. Notably, it effectively discerned low-biomass regions in bale grazing paddocks and areas with reduced biomass impact in sacrifice paddocks compared to other types. These findings highlight the model’s versatility in estimating biomass across a range of scenarios, making it well suited for deployment across various paddock types and environmental conditions.application/pdfenCreative Commons Attribution 4.0 Internationalbiomass estimationRGB imagesstructural variablesspectral variablespaddock typeslearning algorithmsPasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep LearningArticle - Refereed2023-12-22Remote Sensinghttps://doi.org/10.3390/rs15245714