Wilkes, Jessica Meredith2023-06-012023-06-012023-05-31vt_gsexam:37341http://hdl.handle.net/10919/115275Mild traumatic brain injury (mTBI) accounts for approximately 73-83% of all traumatic brain injuries (TBI) and continues to be a serious clinical challenge [1]. The role of injury mechanism in TBI has been widely debated, and it is believed that although there are differences between diffuse and focal TBI, the resulting injury is not influenced by the way in which it was acquired [1], [2]. It is known that TBIs can cause cognitive impairments that are often due to injury experienced in the hippocampus [2]. In response to insult, quiescent neural stem cell (NSC) populations within the dentate gyrus region of the hippocampus become activated. Stem cell differentiation following injury is hypothesized to be unique for diffuse and impact TBIs, primarily due to the differences in mechanotransduction pathways triggered by each respective injury. By quantifying the lineage of stem cells through immunohistochemistry, this study examined the dentate gyrus following mTBI in a rodent model, and the contribution that injury mechanism plays in mTBI outcomes. Additionally, the behavioral effects of mTBI were assessed through open field testing at 72 hours and four weeks following injury. Overall, these findings indicated that after four weeks following mTBI, there are not significant differences between impact and blast both from an immunohistochemical and behavioral standpoint. Despite there being few differences between injury groups, these findings help clarify the role of injury mechanism not only in the context of neurogenesis, but they also inform future studies addressing preventative and treatment strategies for mTBI.ETDenIn CopyrightMild Traumatic Brain InjuryNeural Stem CellsInjury MechanismDiffuse InjuryFocal InjuryThe Role of Injury Mechanism in Neurogenesis Following Repeated Mild Traumatic Brain Injury in the Dentate GyrusThesis