Buczynski, Matthew W.Stephens, Daren L.Bowers-Gentry, Rebecca C.Grkovich, AndrejDeems, Raymond A.Dennis, Edward A.2017-01-142017-01-142007-08-030021-9258http://hdl.handle.net/10919/74311Arachidonic acid is released by phospholipaseA2 and converted into hundreds of distinct bioactive mediators by a variety of cyclooxygenases (COX), lipoxygenases (LO), and cytochrome P450s. Because of the size and diversity of the eicosanoid class of signaling molecules produced, a thorough and systematic investigation of these biological processes requires the simultaneous quantitation of a large number of eicosanoids in a single analysis. We have developed a robust liquid chromatography/tandem mass spectrometry method that can identify and quantitate over 60 different eicosanoids in a single analysis, and we applied it to agonist stimulated RAW264.7 murine macrophages. Fifteen different eicosanoids produced through COX and 5-LO were detected either intracellularly or in the media following stimulation with 16 different agonists of Toll-like receptors (TLR), G protein-coupled receptors, and purinergic receptors. No significant differences in the COX metabolite profiles were detected using the different agonists; however, we determined that only agonists creating a sustained Ca2<sup>2+</sup> influx were capable of activating the 5-LO pathway in these cells. Synergy between Ca2<sup>2+</sup> and TLR pathways was detected and discovered to be independent of NF-κB-induced protein synthesis. This demonstrates that TLR induction of protein synthesis and priming for enhanced phospholipase A<sub>2</sub>-mediated eicosanoid production work through two distinct pathways.22834 - 22847 page(s)Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalTLR-4 and Sustained Calcium Agonists Synergistically Produce Eicosanoids Independent of Protein Synthesis in RAW264.7 CellsArticle - RefereedJournal of Biological Chemistryhttps://doi.org/10.1074/jbc.M701831200282311083-351X