Bourquin, Rebecca M.2020-02-072020-02-072020-02-06vt_gsexam:23347http://hdl.handle.net/10919/96757Clinch Dace (Chrosomus sp. cf. saylori) is a newly recognized species of minnow with a restricted distribution in southwestern Virginia. Field sampling and genetic analysis support the hypothesis that Clinch Dace populations are small and fragmented. Analysis of neutral genetic markers shows that most Clinch Dace populations have undergone past bottleneck events and are being operated upon by random genetic drift. Bayesian cluster analysis showed that three out of the seven populations found in 2017 are distinct, while the other four show signs of more recent admixture. However, Fst values among streams were high and analysis of molecular variance indicated differentiation among populations in all streams. These findings support the view that these populations are genetically isolated. Effective populations sizes were low at most sites, enhancing the likelihood of loss of alleles to genetic drift. Low M-ratios, non-zero Fis values, and high degrees of relatedness among individuals indicate that some inbreeding is taking place. Habitat analysis did not identify variables affecting distribution or abundance of Clinch Dace populations. As the collection sites were targeted near known Clinch Dace occupied sites, it is likely that habitat variables known to impact Clinch Dace, such as conductivity, were within the species' range of tolerance. Results showed that Clinch Dace seem particularly resilient to sedimentation, corroborating earlier work showing a negative relationship between Clinch Dace abundance to sediment size. That is, small sediment size does not seem to have a negative impact on Clinch Dace abundance. Of all sites where Clinch Dace were found, only one culvert at one site was clearly perched and may present a barrier to upstream migration, a possibility which is supported by the genetic differentiation found among collections above and below that culvert. While this study demonstrates that selectively neutral genetic differentiation has taken place among Clinch Dace populations, it does address any local adaptation that may be taking place which would render translocations a risk for outbreeding depression. The findings of this study can inform conservation management in identifying possible sources of individuals for translocations among populations or for augmentation following captive breeding.ETDIn CopyrightClinch Dacefragmentationgenetic differentiationroad crossingsPopulation Fragmentation and Genetic Diversity of Chrosomus sp. cf. saylori (Clinch Dace)Thesis