Herlihy, John H.2020-04-092020-04-092020-04-08vt_gsexam:24313http://hdl.handle.net/10919/97571Plants are sessile organisms adapted to cope with dynamic changes in their environment. Abiotic stresses, such as heat, drought, or nutrient deficiency must be overcome simultaneously with biotic threats such as pathogens and herbivores. Oomycete pathogens represent a significant threat to global food production and natural ecosystems. Novel modes of oomycete disease control could increase crop yield and reduce pesticide application. Overlaps between the plant response to iron deficiency and pathogens have been documented, but the impact of simultaneous imposition of both stresses on the plant have not been studied. Additionally, nothing is known about the impact of iron deficiency on oomycete infection, or mechanisms of oomycete iron uptake. We adapted a hydroponic system to simultaneously impose iron deficiency and monitor pathogen infection. The oomycete pathogens Hyaloperonospora arabidopsidis, and Phytophthora capsici grew less well on iron-deficient Arabidopsis thaliana, at least in part because of observed activation of immunity due to iron stress. We screened A. thaliana T-DNA insertion mutants defective in iron metabolism and transport and identified potential mechanisms of H. arabidopsidis iron acquisition. We conducted RNA sequencing to understand how A. thaliana responds to iron deficiency and root infection of P. capsici. 323 genes were differentially upregulated in iron-starved plants over three days, irrespective of pathogen infection, representing a core iron deficiency response. This group of core genes included the primary A. thaliana iron uptake pathway and genes for coumarin biosynthesis. Salicylic acid responsive genes were observed in both treatments consistent with this defense hormone's previously identified role in iron deficiency. Genes related to glucosinolate production – shown to be important in defense against P. capsici – were down regulated during infection, potentially due to the activity of virulence effectors. Our work demonstrates crosstalk between the iron deficiency response and plant immunity, and that iron acquisition remains important to the plant even after pathogen invasion. These new insights provide a first step in developing novel resistance strategies to control oomycetes in agronomically important crops.ETDIn CopyrightIronHyaloperonospora arabidopsidisPhytophthora capsicitranscriptomeThe Impact of Iron Deficiency on Plant-Oomycete InteractionsDissertation