Wu, Chongming2014-03-142014-03-141998-08-13etd-72198-18137http://hdl.handle.net/10919/30682Bioassay directed fractionation of the methyl ethyl ketone extract of Chiloscyphus rivularis yielded eight sesquiterpenoids, and detailed spectroscopic interpretation led to the assignment of their structures as 12-hydroxychiloscyphone, chiloscypha-2,7-dione, 12-hydroxychiloscypha-2,7-dione, chiloscypha-2,7,9-trione, rivulalactone, 4-hydroxy oppositant-7-one, chiloscyphone, and intermedeol. The structure and stereochemistry of rivulalactone, a novel trinorsesquiterpenoid, was confirmed by its synthesis starting from chiloscyphone. 12-Hydroxychiloscyphone, chiloscypha-2,7-dione, 12-hydroxychiloscypha-2,7-dione, chiloscypha-2,7,9-trione, rivulalactone are new. 12-Hydroxychiloscyphone showed selective bioactivity towards DNA repair-deficient yeast mutants and cytotoxicity to human lung carcinoma cells. In order to improve the activity of cytotoxic furanonaphthoquinones by affixing a hydroxyamino side chain, 2-methyl-2-[2'-(4',9'-dihydronaphtho[2',3'-b]furan-4',9'-dionyl methyl)amino]-1,3-propanediol and its analogs have been synthesized. Bioassay data showed they act by a different mechanism of action than their parental furanonaphthoquinone derivatives.In Copyrightnatural productsantitumorsesquiterpenoidfuranonaphthoquinoneStructural and Synthetic Studies of Potential Antitumor Natural ProductsDissertationhttp://scholar.lib.vt.edu/theses/available/etd-72198-18137/