Clark, Ian Andrew2015-01-102015-01-102015-01-09vt_gsexam:4367http://hdl.handle.net/10919/51178The wings of most species of owl have been shown to possess three unique physical attributes which allow them to hunt in effective silence: a comb of evenly-spaced bristles along the wing leading-edge; a compliant and porous fringe of feathers at the trailing-edge; and a velvety down material distributed over the upper wing surface. This investigation focuses on the last of the mechanisms as a means to reduce noise from flow over surface roughness. A microscopic study of several owl feathers revealed the structure of the velvety down to be very similar to that of a forest or a field of crops. Analogous surface treatments (suspended canopies) were designed which simulated the most essential geometric features of the velvety down material. The Virginia Tech Anechoic Wall-Jet Facility was used to perform far-field noise and surface pressure fluctuation measurements in the presence of various combinations of rough surfaces and suspended canopies. All canopies were demonstrated to have a strong influence on the surface pressure spectra, and attenuations of up to 30 dB were observed. In addition, all canopies were shown to have some positive effects on far-field noise, and optimized canopies yielded far-field noise reductions of up to 8 dB across all frequencies at which roughness noise was observed. This development represents a new passive method for roughness noise control with possibility for future optimization and application to engineering structures.ETDIn CopyrightRoughness NoiseBio-InspiredNoise ReductionNoise ControlCanopiesA Study of Bio-Inspired Canopies for the Reduction of Roughness NoiseThesis