Mohammadhassani, Ardavan2023-07-072023-07-072023-07-06vt_gsexam:38078http://hdl.handle.net/10919/115665Developing microgrids is an attractive solution for integrating inverter-based resources (IBR) in the power system. Distributed control is a potential strategy for controlling such microgrids. However, a major challenge toward the proliferation of distributed control is cybersecurity. A false data injection (FDI) attack on a microgrid using distributed control can have severe impacts on the operation of the microgrid. Simultaneously, a microgrid needs to be protected from system faults to ensure the safe and reliable delivery of power to loads. However, the irregular response of IBRs to faults makes microgrid protection very challenging. A microgrid is also susceptible to faults inside IBR converters. These faults can remain undetected for a long time and shutdown an IBR. This dissertation first proposes a method that reconstructs communicated signals using their autocorrelation and crosscorrelation measurements to make distributed control more resilient against FDI attacks. Next, this dissertation proposes a protection scheme that works by classifying measured harmonic currents using support vector machines. Finally, this dissertation proposes a protection and fault-tolerant control strategy to diagnose and clear faults that are internal to IBRs. The proposed strategies are verified using time-domain simulation case studies using the PSCAD/EMTDC software package.ETDenIn CopyrightCybersecurityinverter-based resourcesmicrogridspower system protectionProtection and Cybersecurity in Inverter-Based MicrogridsDissertation