Gillespie, Jason Michael2011-08-222011-08-222003-12-02etd-12042003-173047http://hdl.handle.net/10919/11071We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Further, the analysis of the root systems allows us to state formulae for every coefficient in Lusztig's q-analogue for rank 2 Lie algebras.ETDIn CopyrightLusztig q-analogueCombinatoricsLie AlgebrasRoot SystemsA Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie AlgebrasDissertationhttp://scholar.lib.vt.edu/theses/available/etd-12042003-173047