Trout, Alvin McKinley2014-03-142014-03-142000-08-29etd-09122000-14570027http://hdl.handle.net/10919/35025Presently, the industry accepted method for determining the positive moment strength of gravity loaded standing seam metal roof systems is the "Base Test Method". The Base Test Method provides a means for determining the positive moment strength of a multiple span, multiple purlin line standing seam roof system using the results from a set of six single span, simply supported, two-purlin line experimental tests. A set of six base tests must be conducted for each combination of purlin profile, deck panel profile, clip type, and intermediate bracing configuration. The primary objective of this study is to investigate the possibility of eliminating some of the roof system parameters specifically, clip type, purlin flange width, and roof panel thickness. This study used the results from nine series of tests. Each series consists of 11 to 14 gravity loaded base tests. The first three series were used to examine the effects of clip type on the strength of standing seam roof system. The final six series was used to examine the effects of flange width and roof panel thickness. All nine series were constructed using Z-purlin sections with flanges facing the same direction (like orientation). Based on the results of this study, clip type, purlin flange width, and roof panel thickness all have an effect on the strength of standing seam roof systems. Although none of the roof components can be completely eliminated from the required test matrix, by using trend relationships an acceptable test protocol was developed that results in a significant reduction in the number of required base tests.enIn CopyrightStanding Seam Roof SystemPurlinsReduction FactorFurther Study of the Gravity Loading Base Test MethodThesishttp://scholar.lib.vt.edu/theses/available/etd-09122000-14570027/