Spargo, John Thomas2014-03-142014-03-142004-12-14etd-01032005-092600http://hdl.handle.net/10919/40532The accumulation of P in soil from land-applied biosolids and manure increases the risk for P enrichment of agricultural runoff. Transport of these residuals to areas where P may be efficiently utilized is necessary to reduce the threat to water quality. Composting can improve biosolids and manure handling characteristics to make their transportation more feasible; however, little is known about P dynamics in compost-amended soil. We investigated the factors controlling P solubility and plant availability in two soils, a Kempsville fine sandy loam (Typic Hapludult) and a Fauquier silty clay loam (Ultic Hapludalf), amended with one of 4 composts (2 biosolids composts and 2 poultry litter - yard waste composts), poultry litter, or inorganic P (as KH2PO4) in incubation and greenhouse pot studies. We also compared the effects of compost, poultry litter and commercial fertilizer on surface P runoff from a Fauquier silty clay loam that had received compost, poultry litter, or commercial fertilizer for 5 years. Organic amendments with higher concentrations of Fe, Al, and Ca had lower relative P solubility/availability. Phosphorus solubility in the Kempsville fine sandy loam, having far lower native P binding capacity, was more affected by Fe, Al, and Ca applied with the organic amendments. The concentration of P in runoff from the compost treatments was higher; however, infiltration was increased and runoff decreased so the mass loss of P and sediment was lower. Improved soil physical properties associated with compost applications aid to limit P runoff.enIn Copyrightpoultry litterphosphorus runoffcompostbiosolidsAvailability and Surface Runoff of Phosphorus from Compost Amended Mid-Atlantic SoilsThesishttp://scholar.lib.vt.edu/theses/available/etd-01032005-092600/