Sifat, Ashrarul Haq2019-01-302019-01-302018-12-12http://hdl.handle.net/10919/87082Human beings have a touch and force estimation mechanism beneath their feet. They use this feeling of touch and force to maintain balance, walk, run and perform various agile motions. This paper presents a new sensor platform beneath the humanoid feet, enabled by a pragmatic model based compliant foot design and sensor configuration that mimics the human tactile sensory system for contact force measurement in humanoid robots. Unlike previous force sensor based approaches, the system is defined as a total and sufficient method of Ground Reaction Force (GRF) and Zero Moment Point (ZMP) measurement for balancing and walking using contact force feedback in mid to full sized humanoids. The conventional systems for the GRF and ZMP measurement are made of heavy metallic parts that tend to be bulky and vulnerable to inertial noises upon high acceleration. In addition to low cost and reliable operation, the proposed system can withstand shock and enable agile motion much like humans do with their footpad. The proposed foot is manufactured using state-of-the-art technique with elastomer padding which not only protects the sensors but also acts as a compliance beneath the foot giving integrity in structural design. This composite layer provides compliance and traction for foot collision while the contact surfaces are sampled for pressure distribution which can be mapped into three axis force and ZMP. A single step training process is required to relate the sensor readings to force measurement. The system’s capability of contact force measurement, subsequent ZMP estimation is experimentally verified with the application of appropriate software. Moreover, a simulation study has been conducted via Finite Element Analysis (FEA) of the footpad structure to analyze the proposed footpad structure. The experimental results demonstrate why this can be a major step toward a biomimetic, affordable yet robust contact force and ZMP measurement method for humanoid robots. This work was supported by the Office of Naval Research, Grant N00014-15-1-2128 as part of development of Project SAFFiR (Shipboard Autonomous Firefighting Robot).ETDen-USCreative Commons Attribution-ShareAlike 3.0 United StatesHumanoid RobotsTactile SensorsAdditive manufacturingArtificial Neural NetworksForce MeasurementTactile Sensing System Integrated to Compliant Foot of Humanoid Robot for Contact Force MeasurementThesis