Dong, Xu2019-01-242019-01-242018-09http://hdl.handle.net/10919/86883Melanoma is the most deadly form of skin cancer worldwide, which causes the 75% of deaths related to skin cancer. National Cancer Institute estimated that 91,270 new case and 9,320 deaths are expected in 2018 caused by melanoma. Early detection of melanoma is the key for the treatment. The image technique to diagnose skin cancer is dermoscopy, which leads to improved diagnose accuracy compared to traditional ABCD criteria. But reading and examining dermoscopic images is a time-consuming and complex process. Therefore, computerized analysis methods of dermoscopic images have been developed to assist the visual interpretation of dermoscopic images. The automatic segmentation of skin lesion attributes is a key step in computerized analysis of dermoscopic images. The International Skin Imaging Collaboration (ISIC) hosted the 2018 Challenges to help the diagnosis of melanoma based on dermoscopic images. In this thesis, I develop a deep learning based approach to automatically segment the attributes from dermoscopic skin lesion images. The approach described in the thesis achieved the Jaccard index of 0.477 on the official test dataset, which ranked 5th place in the challenge.ETDen-USIn CopyrightSkin LesionDeep learning (Machine learning)Attributes SegmentationMelanomaSegmenting Skin Lesion Attributes in Dermoscopic Images Using Deep Learing Algorithm for Melanoma DetectionThesis