Folgar, Carlos Eduardo2014-03-142014-03-142010-05-10etd-05192010-013744http://hdl.handle.net/10919/27801Structure evolution of silica aerogel was studied in microwave- and conventionally processed samples over the temperature range from 25 to 1200â °C. The samples were produced using sol-gel processing and dried under carbon dioxide supercritical conditions. After drying, the monolithic samples received a thermal treatment at different programmed temperatures in two different ovens, conventional and microwave. The microwave process was performed using a single mode microwave oven at 2.45GHz. Dielectric properties were measured using the cavity perturbation method, and structural characterization was carried out using a variety of techniques, including absorption surface analysis, Helium pycnometry, Archimedes principle, Fourier transform infrared spectroscopy, X-ray diffraction, and high resolution microscopy. The data obtained revealed that structural differences do exist between microwave- and conventionally processed samples. Three different regions were identified from the structural characterization of the samples. Regions I exhibited a structure densification at temperatures between 25 and 850â °C. Region II was characterized by a bulk densification in the temperature range from 850 to 1200â °C. Region III was represented by the onset of crystallization above 1200â °C. Explanation and possible causes behind the structural differences observed in each region are provided. In general, the structure evolution observed in microwave- and conventionally processed samples followed the same order, but occurred at lower temperature for the microwave process.In Copyrightsilica gelsingle mode microwave ovendielectric measurementsmicrowave processStructure Evolution of Silica Aerogel under a Microwave FieldDissertationhttp://scholar.lib.vt.edu/theses/available/etd-05192010-013744/