Delvecchio, Matthew David2020-08-202020-08-202020-08-19vt_gsexam:27219http://hdl.handle.net/10919/99792Recent innovations in machine learning have paved the way for new capabilities in the field of radio frequency (RF) communications. Machine learning techniques such as reinforcement learning and deep neural networks (DNN) can be leveraged to improve upon traditional wireless communications methods so that they no longer require expertly-defined features. Simultaneously, cybersecurity and electronic warfare are growing areas of focus and concern in an increasingly technology-driven world. Privacy and confidentiality of communication links are both more important and more difficult than ever in the current high threat environment. RF machine learning (RFML) systems contribute to this threat as they have been shown to be successful in gleaning information from intercepted signals, through the use of learning-enabled eavesdroppers. This thesis focuses on a method of defense against such communications threats termed an adversarial evasion attack in which intelligently crafted perturbations of the RF signal are used to fool a DNN-enabled classifier, therefore securing the communications channel. One often overlooked aspect of evasion attacks is the concept of maintaining intended use. In other words, while an adversarial signal, or more generally an adversarial example, should fool the DNN it is attacking, this should not come at the detriment to it's primary application. In RF communications, this manifests in the idea that the communications link must be successfully maintained with friendly receivers, even when executing an evasion attack against malicious receivers. This is a difficult scenario, made even more so by the nature of channel effects present in over-the-air (OTA) communications, as is assumed in this work. Previous work in this field has introduced a form of evasion attack for RFML systems called a communications aware attack that explicitly addresses the reliable communications aspect of the attack by training a separate DNN to craft adversarial signals; however, this work did not utilize the full RF processing chain and left residual indicators of the attack that could be leveraged for defensive capabilities. First, this thesis focuses on implementing forward error correction (FEC), an aspect present in most communications systems, in the training process of the attack. It is shown that introducing this into the training stage allows the communications aware attack to implicitly use the structure of the coding to create smarter and more efficient adversarial signals. Secondly, this thesis then addresses the fact that in previous work, the resulting adversarial signal exhibiting significant out-of-band frequency content, a limitation that can be used to render the attack ineffective if preprocessing at the attacked DNN is assumed. This thesis presents two novel approaches to solve this problem and eliminate the majority of side content in the attack. By doing so, the communications aware attack is more readily applicable to real-world scenarios.ETDIn CopyrightSpectrum SensingAdversarial Machine LearningRadio Frequency Machine LearningCommunications SecurityEnhancing Communications Aware Evasion Attacks on RFML Spectrum Sensing SystemsThesis