Stevenson Salinas, Valentina Beatriz2023-01-312023-01-312023-01-30vt_gsexam:36291http://hdl.handle.net/10919/113575Melanoma is a highly malignant neoplasia with high rates of metastasis in humans and dogs. Regardless of being considered a highly immunogenic neoplasm, the function of the immune system is hampered by the expression of immune checkpoint molecules by the cancer cells. In contrast, soft tissue sarcomas are poorly immunogenic, as Tumor infiltrating Lymphocytes are lacking, or when present they are usually at the periphery of the tumor. Still, soft tissue sarcomas are considered immunosuppressed. Checkpoint molecules from the PD-axis are overexpressed in numerous human malignant neoplasia and have recently gained attention with a few reports in canine tumors. Immunotherapies against these checkpoint molecules have shown great efficacy in humans, but in order to determine translational approaches into canine patients, more research is needed. Here we determined the gene expression of Programed Death receptor-1, and its ligands PD-L1 and PD-L2 in canine tumors with two distinct immune profiles. Our results show that regardless of their immune profiles, melanoma versus soft tissue sarcoma, checkpoint molecules expression was higher in malignant tumors with a higher grade. Additionally, we evaluated the expression of these molecules in a set of patients that received histotripsy, which is a non-invasive and non-thermal ultrasound focused therapy that induces mechanical stress to the cells, leading to liquefactive necrosis. Here we reported a focal decrease of the expression of these checkpoint molecules in tissue sections obtain at the treatment interface, compared to those taken from untreated areas of the tumor. In addition, a positive relationship was noticed between the infiltration of CD3+ T lymphocytes and the expression of these checkpoint molecules in both canine melanoma, and soft tissue sarcoma. Our findings demonstrate that immunotherapies targeting these checkpoint molecules have a great potential for efficacy in canine neoplasia, along or combined with tumor ablation therapies that increased immune cell infiltration in poorly immunogenic neoplasia.ETDenIn CopyrightComparative oncologycheckpoint moleculescanine melanomacanine soft tissue sarcomaPD-1PD-L1PD-L2Tumor infiltrating lymphocytes.Molecular basis of immunotolerance in canine neoplasiaDissertation