Werner, Matthew Allan2022-06-242022-06-242022-06-23vt_gsexam:34843http://hdl.handle.net/10919/110928Much effort in recent times has been devoted to the study of low energy transport in multibody gravitational systems. Despite continuing advancements in computational abilities, such studies can often be demanding or time consuming in the three-body and four-body settings. In this work, the Hamiltonian describing the planar circular restricted three-body problem is rewritten for systems having small mass parameters, resulting in a 2D symplectic twist map describing the evolution of a particle's Keplerian motion following successive close approaches with the secondary. This map, like the true dynamics, admits resonances and other invariant structures in its phase space to be analyzed. Particularly, the map contains rotational invariant circles reminiscent of McGehee's invariant tori blocking transport in the true phase space, adding a new quantitative description to existing chaotic zone estimates about the secondary. Used in a patched three-body setting, the map also serves as a tool for investigating transfer trajectories connecting loose captures about one secondary to the other without any propulsion systems. Any identified initial conditions resulting in such a transfer could then serve as initial guesses to be iterated upon in the continuous system. In this work, the projection of the McGehee torus within the interior realm is identified and quantified, and a transfer from Earth to Venus is exemplified.ETDenIn CopyrightDynamical astronomysymplectic mapschaotic transportresonancesMultiple Gravity Assists for Low Energy Transport in the Planar Circular Restricted 3-Body ProblemThesis