Meesala, Vamsi Chandra2021-01-062021-01-062021-01-05vt_gsexam:28587http://hdl.handle.net/10919/101752Ultrasound acoustic energy transfer (UAET) is an emerging contactless technology that offers the capability to safely and efficiently power sensors and devices while eliminating the need to replace batteries, which is of interest in many applications. It has been proposed to recharge and communicate with implanted medical devices, thereby eliminating the need for invasive and expensive surgery and also to charge sensors inside enclosed metal containers typically found in automobiles, nuclear power plants, space stations, and aircraft engines. In UAET, energy is transferred through the reception of acoustic waves by a piezoelectric receiver that converts the energy of acoustic waves to electrical voltage. It has been shown that UAET outperforms the conventional CET technologies that use electromagnetic waves to transfer energy, including inductive coupling and capacitative coupling. To date, the majority of research on UAET systems has been limited to modeling and proof-of-concept experiments, mostly in the linear regime, i.e., under small levels of acoustic pressure that result in small amplitude longitudinal vibrations and linearized piezoelectricity. Moreover, existing models are based on the "piston-like" deformation assumption of the transmitter and receiver, which is only accurate for thin disks and does not accurately account for radiation effects. The linear models neglect nonlinear effects associated with the nonlinear acoustic wave propagation as well as the receiver's electroelastic nonlinearities on the energy transfer characteristics, which become significant at high source strengths. In this dissertation, we present experimentally-validated analytical and numerical multiphysics modeling approaches aimed at filling a knowledge gap in terms of considering resonant acoustic-piezoelectric structure interactions and nonlinear effects associated with high excitation levels in UAET systems. In particular, we develop a reduced-order model that can accurately account for the radiation effects and validate it by performing experiments on four piezoelectric disks with different aspect ratios. Next, we study the role of individual sources of nonlinearity on the output power characteristics. First, we consider the effects of electroelastic nonlinearities. We show that these nonlinearities can shift the optimum load resistance when the acoustic medium is fluid. Next, we consider the nonlinear wave propagation and note that the shock formation is associated with the dissipation of energy, and as such, shock formation distance is an essential design parameter for high-intensity UAET systems. We then present an analytical approach capable of predicting the shock formation distance and validate it by comparing its prediction with finite element simulations and experimental results published in the literature. Finally, we experimentally investigate the effects of both the nonlinearity sources on the output power characteristics of the UAET system by considering a high intensity focused ultrasound source and a piezoelectric disk receiver. We determine that the system's efficiency decreases, and the maximum voltage output position drifts towards the source as the source strength is increased.ETDIn CopyrightUltrasound acoustic energy transferPiezoelectric materialsAcoustic structure interactionsNonlinear acousticsNonlinear constitutive relationsParameter identificationFinite element methodReduced order modelingPerturbation techniquesMeNonlinear Effects in Contactless Ultrasound Energy Transfer SystemsDissertation