Vekhande, Swapnil Sudhir2019-06-152019-06-152019-06-14vt_gsexam:20455http://hdl.handle.net/10919/90182Computed Tomography (CT) finds applications across domains like medical diagnosis, security screening, and scientific research. In medical imaging, CT allows physicians to diagnose injuries and disease more quickly and accurately than other imaging techniques. However, CT is one of the most significant contributors of radiation dose to the general population and the required radiation dose for scanning could lead to cancer. On the other hand, a shallow radiation dose could sacrifice image quality causing misdiagnosis. To reduce the radiation dose, sparse-view CT, which includes capturing a smaller number of projections, becomes a promising alternative. However, the image reconstructed from linearly interpolated views possesses severe artifacts. Recently, Deep Learning-based methods are increasingly being used to interpret the missing data by learning the nature of the image formation process. The current methods are promising but operate mostly in the image domain presumably due to lack of projection data. Another limitation is the use of simulated data with less sparsity (up to 75%). This research aims to interpolate the missing sparse-view CT in the sinogram domain using deep learning. To this end, a residual U-Net architecture has been trained with patch-wise projection data to minimize Euclidean distance between the ground truth and the interpolated sinogram. The model can generate highly sparse missing projection data. The results show improvement in SSIM and RMSE by 14% and 52% respectively with respect to the linear interpolation-based methods. Thus, experimental sparse-view CT data with 90% sparsity has been successfully interpolated while improving CT image quality.ETDIn CopyrightMedical ImagingImage ReconstructionDeep learning (Machine learning)Deep Learning Neural Network-based Sinogram Interpolation for Sparse-View CT ReconstructionThesis