Cooper, Dylan Morgan2018-03-102018-03-102016-09-15vt_gsexam:8244http://hdl.handle.net/10919/82487In the last few centuries, many streams in the eastern United States have been severely disturbed by land use change and are now disconnected from their original floodplain due to the aggradation of legacy sediment. Currently, stream-floodplain reconnection is advocated as a stream restoration practice to take advantage of ecosystem services. The objective of this study is to compare two current stream restoration approaches for their nutrient flushing ability: 1) a conventional approach leaves legacy sediment on the floodplain; and 2) an ecological approach that involves removing the accumulated legacy sediment in order to restore the original floodplain surface wetland, revealing a buried A soil horizon. Soil cores were taken from the surficial legacy sediment layer and the buried A soil horizon in the floodplain of a 550-meter reach of Stroubles Creek in the Valley and Ridge province near Blacksburg, VA, to evaluate potential for flushable DOC, TDN, NO3-, NH4+, and SRP content. In addition, an inundation model was developed to evaluate the extent of flooding under the two restoration scenarios. The inundation model results and nutrient flushability levels were then used to simulate the release of nutrients as a function of stream restoration approach. Results indicate that the buried A horizon contained less flushable nutrients, but the ecological restoration would have a higher frequency of inundation that allows for more flushable nutrient release at the annual scale. Understanding the nutrient release potential from the floodplain will provide the ability to estimate net nutrient retention in different stream-floodplain reconnection strategies.ETDIn Copyrightlegacy sedimentrelict wetland soilinundationNutrient release potential during floodplain reconnection: Comparison of conventional and ecological stream restoration approachesThesis