Farhadi, Mehrnoush2018-09-152018-09-152018-09-14vt_gsexam:16833http://hdl.handle.net/10919/85022Concrete is a popular construction material for bridges, due to its high durability and energy efficiency. An important concern for concrete bridges is the possible occurrence of chloride- induced corrosion in prestressing strands and reinforcing bars, which may substantially impact the service life of such structures. Chloride- induced corrosion is a complicated electrochemical process which is affected by heat transfer, moisture flow and transport of chemical species through the concrete pore network. Reliable and robust analytical tools are required to allow multi-physics simulations of steel corrosion. This study has developed a nonlinear finite element analysis program, called VT-MultiPhys, to enable multi-physics simulations, including analyses of chloride-induced corrosion. The program includes constitutive laws, element formulations and global solution schemes to allow the analysis of steady-state (static) and time-dependent (dynamic) problems, involving multiple, coupled processes such as mechanical deformation, heat transfer, mass flow and chemical reactions combined with advective/diffusive transport of the various species. Special analysis schemes, based on the streamline-upwind Petrov-Galerkin (SUPG) method, have also been implemented to address the spatial instabilities which characterize analyses of advection-dominated transport. The finite element modeling scheme, constitutive laws and boundary conditions for analysis of chloride-induced corrosion are described in detail. The constitutive laws can be combined with inelastic material models to capture the damage (e.g., cracking) due to chloride-induced corrosion. A set of verification analyses is presented, to demonstrate the capabilities of VT-MultiPhys to conduct different types of simulations and reproduce the closed-form analytical solutions of simple cases. Validation analyses for heat conduction, moisture flow and chloride transport, using data from experimental tests in the literature, are also presented.ETDIn CopyrightAdvection-diffusionChloride-induced CorrosionChloride transportElectro-chemical cellFinite element analysisMoisture isothermReinforced concrete structuresPolarizationSUPG methodTafel diagramFinite Element Modeling of Steel Corrosion in Concrete StructuresThesis