Singh, Meghendra2019-01-262019-01-262019-01-25vt_gsexam:18731http://hdl.handle.net/10919/87050Human behavior plays an important role in infectious disease epidemics. The choice of preventive actions taken by individuals can completely change the epidemic outcome. Computational epidemiologists usually employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. Such simulations rarely take into account the decision-making process of human beings when it comes to preventive behaviors. Absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this thesis, we address this problem by developing a methodology to create and calibrate an agent decision-making model for a large multi-agent simulation, in a data driven way. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.ETDIn CopyrightHuman behavior modelingAgent based simulationMarkov decision processesHuman Behavior Modeling and Calibration in Epidemic SimulationsThesis