Pressgrove, Isaac James2022-07-072022-07-072022-07-06vt_gsexam:35191http://hdl.handle.net/10919/111149In pursuit of producing robots capable of achieving the dexterity exhibited by animals in nature, roboticists have begun to explore the application of robotic tails. This thesis will explore the design, optimization, construction, and implementation of an articulated serpentine robotic tail. Numerous serpentine tail prototypes have been designed and tested; however, they have not yet been integrated with a mobile base. The main challenges preventing the incorporation of serpentine tails with mobile bases include: (1) the large size and inflexible packaging associated with the actuation unit for the tail, (2) the relatively low power to weight ratios of the existing serpentine tail systems, and (3) the complexity of optimizing the tails physical parameters. Therefore, to address these issues, a novel layout for a serpentine robotic tail actuation unit along with a design optimization methodology for the tail are proposed. The actuation unit will feature a power dense and modular design which allows for flexibility in packaging. Simulation results along with experimental data gathered using a prototype of the design will be reviewed in order to quantify the performance of the actuation unit. Following, a design optimization methodology which uses a modified direct collocation technique will be presented. The optimization allows for the simultaneous optimization of both a trajectory and the physical structure of a tail. Representative results of this technique will be presented and compared against more traditional methods for design optimization. To conclude the on-going and future work for both the actuation unit and optimization methodology will be stated.ETDenIn CopyrightRoboticsTailsSerpentineDesignMethodologyDirect CollocationOptimizationA Systematic Design Methodology for Articulated Serpentine Robotic Tails to Assist Agile Robot BehaviorsThesis