Holla, Meghana2023-07-082023-07-082023-07-07vt_gsexam:37519http://hdl.handle.net/10919/115684Zero-shot Natural Language-Video Localization (NLVL) has shown promising results in training NLVL models solely with raw video data through dynamic video segment proposal generation and pseudo-query annotations. However, existing pseudo-queries lack grounding in the source video and suffer from a lack of common ground due to their unstructured nature. In this work, we investigate the effectiveness of commonsense reasoning in zero-shot NLVL. Specifically, we present CORONET, a zero-shot NLVL framework that utilizes commonsense information to bridge the gap between videos and generated pseudo-queries through a commonsense enhancement module. Our approach employs Graph Convolutional Networks (GCN) to encode commonsense information extracted from a knowledge graph, conditioned on the video, and cross-attention mechanisms to enhance the encoded video and pseudo-query vectors prior to localization. Through empirical evaluations on two benchmark datasets, we demonstrate that our model surpasses both zero-shot and weakly supervised baselines. These results underscore the significance of leveraging commonsense reasoning abilities in multimodal understanding tasks.ETDenIn CopyrightVideo LocalizationZero-shot Natural Language Video LocalizationCommonsenseMultimodal Machine LearningVision and LanguageCommonsense for Zero-Shot Natural Language Video LocalizationThesis