Lewis, Abigail Sara Larson2024-05-212024-05-212024-05-20vt_gsexam:40660https://hdl.handle.net/10919/119030Dissolved oxygen concentrations are declining in the bottom waters of many lakes around the world, posing critical water quality concerns. Throughout my dissertation, I assessed how bottom-water dissolved oxygen may mediate the effects of climate and land use change on water quality in lakes. First, I characterized causes of variation in summer bottom-water temperature and dissolved oxygen. I demonstrated that spring air temperatures may play a greater role than summer air temperatures in shaping summer bottom-water dynamics. I then characterized the effects of declining bottom-water oxygen concentrations across diverse scales of analysis (i.e., using microcosm incubations, whole-ecosystem oxygenation experiments, and data analysis of >600 widespread lakes). I found that low dissolved oxygen concentrations contributed to release of nutrients and organic carbon from lake sediments, potentially altering the role of lakes in global biogeochemical cycles. Importantly, I also found support for a previously-hypothesized Anoxia Begets Anoxia feedback, whereby bottom-water anoxia (i.e., no dissolved oxygen) in a given year promotes increasingly severe occurrences of anoxia in following summers. This finding demonstrates the need for forecasts of future oxygen dynamics in lakes, as management actions to preempt the first occurrence of anoxia will be more effective than actions to restore ecological function after oxygen concentrations have already declined. To build the capacity for such forecasts, I led a systematic review of ecological forecasting literature that characterized the state of the field, emerging best practices, and relative predictability of four ecological variables. Combined, my dissertation provides a mechanistic examination of the effects of climate change on water quality in lakes worldwide, ultimately helping to anticipate, mitigate, and preempt future water quality declines.ETDenCreative Commons Attribution-NonCommercial 4.0 InternationalAir temperatureanoxiacarbon cyclingclimate changedissolved oxygenecological forecastingecological memoryhypolimnionironiron-bound organic carbonlakereservoirwater temperatureOxygen dynamics in the bottom waters of lakes: Understanding the past to predict the futureDissertation