Kanholy, Santhip Krishnan2014-10-302014-10-302014-10-29vt_gsexam:3874http://hdl.handle.net/10919/50626Fluidized bed reactor technology has been widely adopted within the industry as vital component for numerous manufacturing, power generation and gasification processes due to its enhanced mixing characteristics. Computational modeling of fluidized bed hydrodynamics is a significant challenge that has to be tackled for increasing predictive accuracy. The distributor plate of a fluidized bed is typically modeled using a uniform inlet condition, when in reality the inlet is non-uniform inlet. The regions of bed mass that do not fluidize because of the non-uniform inlet conditions form deadzones and remain static between the jets. A new model based on the mass that contributes to the pressure drop is proposed to model a fluidized bed, and has been investigated for a cylindrical reactor for glass beads, ceramic single solids particles, and glass-ceramic, and ceramic-ceramic binary mixtures. The adjusted mass model was shown to accurately predict fluidization characteristics such as pressure drop and minimum fluidization velocity. The effectiveness of the adjusted mass model was further illustrated by applying it to fluidized beds containing coal, switchgrass, poplar wood, and cornstover biomass particles and coal-biomass binary mixtures. The adjusted mass model was further analyzed for bed expansion heights of different mixtures, and for solids distribution by analyzing the solids volume fraction. The effect of increasing the percent biomass in the mixture was also investigated. To further model the non-uniform inlet condition, two different distributor configurations with 5 and 9 jets was considered for a quasi-2D bed, and simulations were performed in both 2D and 3D. Fluidization characteristics and mixing of the bed were analyzed for the simulation. Furthermore, the deadzones formed due to multiple jet configurations of the distributor are quantified and their distributions over the plate were analyzed.ETDIn CopyrightComputational fluid dynamicsTwo-Phase FlowEulerian-Eulerian modelingFluidized BedDistributor plate ModelingBiomassEulerian-Eulerian Modeling of Fluidized BedsDissertation