Folz, Diane C.2014-03-142014-03-142011-07-19etd-08152011-191016http://hdl.handle.net/10919/34567Historically, coatings were processed from natural oils, fats, and resins; the first well-known and widely used being lacquer [Meir-Westhues, 2007]. In the 20th century, synthetic resins were developed to achieve coatings with improved properties. Of these coating compositions, polyurethanes (PURs) were one of the most prevalent. Polyurethanes became possible in 1937 when Otto Bayer developed the diisocyanate polyaddition process [Randall et al, 2002]. Since that time, literally thousands of PUR compositions have been used commercially. The primary application of interest in this study is that of coatings for wood substrates. It is well-known among materials researchers that there can be a number of differences between microwave and conventional materials treatment techniques [Clark et al, 1996], including enhanced reaction rates, lowered processing temperatures for some products, and selective interactions in composite systems. The primary goals of this research were to determine (1) whether microwave energy affected the cure rate in a water-based, aliphatic PUR, and (2) if there was an effect of microwave frequency on the cure rate. The primary tool for determining extent of cure in the PUR samples was Fourier transform infrared spectroscopy (FTIR). Using this characterization method, the changes in intensities of four bonds specific to the PUR composition were followed. It was determined that, in the particular PUR composition studied, microwave energy had an effect on the cure rate when compared with conventional heating, and that there was a frequency effect on the cure rate. Additionally, a deeper understanding of the use of FTIR spectroscopy techniques for studying cure kinetics was developed.In Copyrightmaterials processingFTIR spectroscopypolymersmicrowave processingVariable Frequency Microwave Curing of PolyurethaneThesishttp://scholar.lib.vt.edu/theses/available/etd-08152011-191016/