Lahn, Nathaniel Adam2020-05-302020-05-302020-05-29vt_gsexam:26211http://hdl.handle.net/10919/98618Given a graph, a matching is a set of vertex-disjoint edges. Graph matchings have been well studied, since they play a fundamental role in algorithmic theory as well as motivate many practical applications. Of particular interest is the problem of finding a maximum cardinality matching of a graph. Also of interest is the weighted variant: the problem of computing a minimum-cost maximum cardinality matching. For an arbitrary graph with m edges and n vertices, there are known, long-standing combinatorial algorithms that compute a maximum cardinality matching in O(m\sqrt{n}) time. For graphs with non-negative integer edge costs at most C, it is known how to compute a minimum-cost maximum cardinality matching in roughly O(m\sqrt{n} log(nC)) time using combinatorial methods. While non-combinatorial methods exist, they are generally impractical and not well understood due to their complexity. As a result, there is great interest in obtaining faster matching algorithms that are purely combinatorial in nature. Improving existing combinatorial algorithms for arbitrary graphs is considered to be a very difficult problem. To make the problem more approachable, it is desirable to make some additional assumptions about the graph. For our work, we make two such assumptions. First, we assume the graph is bipartite. Second, we assume that the graph has a small balanced separator, meaning it is possible to split the graph into two roughly equal-size components by removing a relatively small portion of the graph. Several well-studied classes of graphs have separator-like properties, including planar graphs, minor-free graphs, and geometric graphs. For such graphs, we describe a framework, a general set of techniques for designing efficient algorithms. We demonstrate this framework by applying it to yield polynomial-factor improvements for several open-problems in bipartite matching.ETDIn CopyrightMatchinggraphsgraph separatorscombinatorial optimizationA Separator-Based Framework for Graph Matching ProblemsDissertation