Aycock, Kenneth N.2023-03-312023-03-312023-03-30vt_gsexam:36585http://hdl.handle.net/10919/114233Irreversible electroporation (IRE) is a non-thermal tissue ablation modality in which electrical pulses are used to generate targeted disruption of cellular membranes. Clinically, IRE is administered by inserting one or more needles within or around a region of interest, then applying a series of short, high amplitude pulsed electric fields (PEFs). The treatment effect is dictated by the local field magnitude, which is quite high near the electrodes but dissipates exponentially. When cells are exposed to fields of sufficient strength, nanoscale "pores" form in the membrane, allowing ions and macromolecules to rapidly travel into and out of the cell. If enough pores are generated for a substantial amount of time, cell homeostasis is disrupted beyond recovery and cells eventually die. Due to this unique non-thermal mechanism, IRE generates targeted cell death without injury to extracellular proteins, preserving tissue integrity. Thus, IRE can be used to treat tumors precariously positioned near major vessels, ducts, and nerves. Since its introduction in the late 2000s, IRE has been used successfully to treat thousands of patients with focal, unresectable malignancies of the pancreas, prostate, liver, and kidney. It has also been used to decellularize tissue and is gaining attention as a cardiac ablation technique. Though IRE opened the door to treating previously inoperable tumors, it is not without limitation. One drawback of IRE is that pulse delivery results in intense muscle contractions, which can be painful for patients and causes electrodes to move during treatment. To prevent contractions in the clinic, patients must undergo general anesthesia and temporary pharmacological paralysis. To alleviate these concerns, high-frequency irreversible electroporation (H-FIRE) was introduced. H-FIRE improves upon IRE by substituting the long (~100 µs) monopolar pulses with bursts of short (~1 µs) bipolar pulses. These pulse waveforms substantially reduce the extent of muscle excitation and electrochemical effects. Within a burst, each pulse is separated from its neighboring pulses by a short delay, generally between 1 and 5 µs. Since its introduction, H-FIRE burst waveforms have generally been constructed simply by choosing the duration of constitutive pulses within the burst, with little attention given to this delay. This is quite reasonable, as it has been well documented that pulse duration plays a critical role in determining ablation size. In this dissertation, we explore the role of these latent periods within burst waveforms as well as their interaction with other pulse parameters. Our central hypothesis is that tuning the latent periods will allow for improved ablation size with reduced muscle contractions over traditional waveforms. After gaining a simple understanding of how pulse width and delay interact in vitro, we demonstrate theoretically that careful tuning of the delay within (interphase) and between (interpulse) bipolar pulses in a burst can substantially reduce nerve excitation. We then analyze how pulse duration, polarity, and delays affect the lethality of burst waveforms toward determining the most optimal parameters from a clinical perspective. Knowing that even the most ideal waveform will require slightly increased voltages over what is currently used clinically, we compare the clinical efficacy of two engineered thermal mitigation strategies to determine what probe design modifications will be needed to successfully translate H-FIRE to the clinic while maintaining large, non-thermal ablation volumes. Finally, we translate these findings in two studies. First, we demonstrate that burst waveforms with an improved delay structure allow for enhanced safety and larger ablation volumes in vivo. And finally, we examine the efficacy of H-FIRE in spontaneous canine liver tumors while also comparing the ablative effect of H-FIRE in tumor and non-neoplastic tissue in a veterinary clinical setting.ETDenIn Copyright: tissue ablationpulsed electric fieldsnerve stimulationthermal damageirreversible electroporationtreatment planningminimally invasive surgeryelectropermeabilizationImprovements in Pulse Parameter Selection for Electroporation-Based TherapiesDissertation