Stinson, Nicholas Taylor2019-06-182019-06-182019-06-17vt_gsexam:21207http://hdl.handle.net/10919/90222This thesis describes an adaptable component level machinery system weight and size estimation tool used in the context of a ship distributed system architecture framework and ship synthesis model for naval ship concept design. The system architecture framework decomposes the system of systems into three intersecting architectures: physical, logical, and operational to describe the spatial and functional relationships of the system together with their temporal behavior characteristics. Following an Architecture Flow Optimization (AFO), or energy flow analysis based on this framework, vital components are sized based on their energy flow requirements for application in the ship synthesis model (SSM). Previously, components were sized manually or parametrically. This was not workable for assessing many designs in concept exploration and outdated parametric models based on historical data were not sufficiently applicable to new ship designs. The new methodology presented in this thesis uses the energy flow analysis, baseline component data, and physical limitations to individually calculate sizes and weights for each vital component in a ship power and energy system. The methodology allows for new technologies to be quickly and accurately implemented to assess their overall impact on the design. The optimized flow analysis combined with the component level data creates a higher fidelity design that can be analyzed to assess the impact of various systems and operational cases on the overall design. This thesis describes the SSM, discusses the AFO's contribution, and provides background on the component sizing methodology including the underlying theory, baseline data, energy conversion, and physical assumptions.ETDIn Copyrightship designnaval shipdistributed systemsystem architectureset-based designRefinement of Surface Combatant Ship Synthesis Model for Network-Based System DesignThesis