Dahiya, Ankuj2021-03-312021-03-312021-03-30vt_gsexam:29419http://hdl.handle.net/10919/102891To make sound decisions about the remaining life of a structure, the precise calculation of the prestress losses is very important. In post-tensioned structures, the prestress losses due to creep and shrinkage can cause serviceability issues and can reduce flexural capacity. The Varina-Enon Bridge is a cable-stayed, precast, segmental, post-tensioned box girder bridge located in Richmond, Virginia. Observation of flexural cracks in the bridge by inspectors promoted a study regarding long-term prestress losses in the structure. For understanding and sustaining the structure throughout its remaining service life, accurately quantifying prestress losses is important. Two approaches are used to predict long-term prestress losses on the Varina-Enon Bridge. The first approach involves a finite element computer model of the bridge which run a timedependent staged-construction analysis to obtain predicted prestress losses using the CEB-FIP '90 code expressions for creep and shrinkage. The second approach involves the compilation of data from instrumentation mounted in the bridge to back calculate the effective prestress force. The analysis using the computer model predicted the prestress losses as 44.6 ksi in Span 5, 47.9 ksi in Span 6, 45.3 ksi in Span 9, and 45.9 ksi in Span 11. The prestress losses estimated from field data were 50.0 ksi in Span 5, 48.0 ksi in Span 6, 46.7 ksi in Span 9, and 49.1 ksi in Span 11. It can be seen that relative to the results of field data estimations, the finite element analyses underestimated prestress loss, but given the degree of uncertainty in each form of estimation, the results are considered to fit well.ETDIn CopyrightPost-tensioned concretePrestress lossVarina-Enon BridgeFinite element modelingCreepShrinkageThermal gradientLong-Term Monitoring and Evaluation of the Varina-Enon BridgeThesis