Song, Hyun-CheolZhou, Jie E.Maurya, DeepamYan, YongkeWang, Yu U.Priya, Shashank2019-01-032019-01-032017-09-272045-232212353http://hdl.handle.net/10919/86588Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (< 2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.12application/pdfen-USCreative Commons Attribution 4.0 Internationaleffective pyroelectric coefficientsferroelectric domain formationhigh-temperaturecomputer-simulation0.9batio(3)-0.1(bi0.5na0.5)tio3 ceramicsdielectric-propertiesbehaviorfieldbatio3filmsCompositionally Graded Multilayer Ceramic CapacitorsArticle - RefereedScientific Reportshttps://doi.org/10.1038/s41598-017-12402-7728955052