Orange, Nicholas Brian2015-06-302015-06-302015-06-29vt_gsexam:5487http://hdl.handle.net/10919/53955In this document, a low-cost, portable, non-invasive method of collecting the 3D trajectories of flying bats is first presented. An array of commercially available camera and light components is used alongside a number of well-established calibration and triangulation techniques to resolve the motion of agents through a 3D volume. It is shown that this system is capable of accurately capturing the bats' flight paths in a field experiment. The use of non-visible illumination ensures that a natural cave environment is disturbed as little as possible for behavioral experiments. Following is a transfer entropy analysis approach applied to the 3D paths of bats flying in pairs. The 3D trajectories are one-dimensionally characterized as inverse curvature time series to allow for entropy calculations. In addition to a traditional formulation of information flow between pair members, a path coupling hypothesis is pursued with time-delay modifications implemented in such a way as to not change the Markovianity of the process. With this modification, trends are found that suggest a leader-follower interaction between the front bat and the rear bat, although statistical significance is not reached due to the small number of pairs considered.ETDIn CopyrightTransfer EntropyAnimal Behavior3D TrackingTransfer Entropy Analysis of the Interactions of Flying BatsThesis