Amaya, Maria Teresa2022-04-292022-04-292022-04-28vt_gsexam:34276http://hdl.handle.net/10919/109763Economic input-output (I-O) and watershed models provide useful results but when seeking to integrate these systems, the structural, spatial, and temporal differences between these models must be carefully considered. To reconcile these differences, a hydrologic-economic modeling framework is designed to couple an economic model with a watershed model. A physically constrained, I-O model, RCOT, is used to represent the economic system in this framework because it provides sectoral detail for a regional economy and calculates physical resource quantities used by these sectors. Uniquely, it also allows for technology options for all sectors and minimizes the resource use based on environmental constraints imposed by the watershed, which adds complexity to the representation of the economic system and its interactions with the watershed system. To represent the watershed system in this framework, the Hydrological Simulation Program-Fortran (HSPF) is used. An HSPF model has been calibrated to represent the hydrological processes of Cedar Run Watershed by the Occoquan Watershed Monitoring Laboratory (OWML). Thus, the capabilities of this framework are demonstrated using strategic scenarios developed to examine future development patterns that may occur within Fauquier County, northern Virginia, and its local basin, Cedar Run Watershed. The scenarios evaluate both the downstream and seasonal impacts on water flow and nitrogen concentration within the watershed, and the changes made within the economic system in response to these impacts. For these scenarios, the most efficient solution is the one that minimizes the use of resource inputs within the economic sectors, including developed land, water withdrawn, and applied nitrogen, which in turn inform watershed health. The scenario results demonstrate that this coupled hydrologic-economic modeling framework can overcome the spatial differences of the individual models and can capture the interactions between watershed and economic systems at a temporal resolution that expands the types of questions one can address beyond those that can be analyzed using these models separately.ETDenIn Copyrightmodeling frameworkland use changehydrologicinput-output economicswatershedspatial analysissub-annual temporal analysisA Coupled Hydrologic-Economic Modeling Framework for Evaluating Alternative Options for Reducing Watershed Impacts in Response to Future Development PatternsDissertation