Lavisetty, Cherith2024-06-062024-06-062024-06-05vt_gsexam:41001https://hdl.handle.net/10919/119317Unsteady flowfields are integral to high-speed applications, demanding precise modelling to characterize their unsteady features accurately. The simulation of unsteady supersonic and hypersonic flows is inherently computationally expensive, requiring a highly refined mesh to capture these unsteady effects. While anisotropic metric-based adaptive mesh refinement has proven effective in achieving accuracy with much less complexity, current algorithms are primarily tailored for steady flow fields. This thesis presents a novel approach to address the challenges of anisotropic grid adaptation of unsteady flows by leveraging a data-driven technique called Dynamic Mode Decomposition (DMD). DMD has proven to be a powerful tool to model complex nonlinear flows, given its links to the Koopman operator, and also its easy mathematical implementation. This research proposes the integration of DMD into the process of anisotropic grid adaptation to dynamically adjust the mesh in response to evolving flow features. The effectiveness of the proposed approach is demonstrated through numerical experiments on representative unsteady flow configurations, such as a cylinder in a subsonic flow and a cylinder in a supersonic channel flow. Results indicate that the incorporation of DMD enables an accurate representation of unsteady flow dynamics. Overall, this thesis contributes to making advances in the adaptation of unsteady flows. The novel framework proposed makes it computationally tractable to track the evolution of the main coherent features of the flowfield without losing out on accuracy by using a data-driven method.ETDenCreative Commons Attribution 4.0 InternationalComputational Fluid DynamicsAnisotropic Grid AdaptationDynamic Mode DecompositionKoopman OperatorUnsteady FlowsUnsteady Metric Based Grid Adaptation using Koopman ExpansionThesis