Lee, Y.Alexander, N. B.Franck, C. T.Madigan, M. L.2025-04-142025-04-142023-01-012023-10-251071-1813https://hdl.handle.net/10919/125176Falls are the most common cause of non-fatal injuries, and trips are responsible for high percentages of those falls in the United States. Traditional method for estimating trunk kinematics during overground trips uses optical marker-based motion capture systems. However, their cost and space requirements can often be barriers in this research field. Inexpensive and portable inertial measurement units may be an appropriate alternative. This study compared trunk flexion angle and angular velocity at touchdown of the initial recovery step after laboratory-induced trips while walking captured by the optical markerbased motion capture system versus IMUs. Our results provide evidence that a sternum-worn IMU can provide trunk kinematic measurements of clinical relevance and may be used to provide meaningful data to understand kinematic responses to trips or trip-induced falls that occur in real life.Pages 2120-2123In Copyright4201 Allied Health and Rehabilitation Science42 Health Sciences4207 Sports Science and ExerciseComparing Trunk Kinematics Computed by Optical Marker-Based Motion Capture System and Inertial Measurement Units During Overground TripsConference proceedingProceedings of the Human Factors and Ergonomics Societyhttps://doi.org/10.1177/21695067231192698671Franck, Christopher [0000-0003-1251-4378]Madigan, Michael [0000-0002-4299-3851]2169-5067