Cai, Yinsong2019-09-132019-09-132019-09-12vt_gsexam:22127http://hdl.handle.net/10919/93582The intermediate bus architecture employing the 48V bus converter is one of the most popular power architecture. 48V to 12V bus converter has wide applications in telecommunications, networks, aerospace, and military, etc. However, today's state of the art products has low power rating or power density and becomes difficult to satisfy the demand of increasing power of the loads. To improve the current design, a GaN (Gallium Nitride) based two-stage solution is proposed for the bus converter. The first stage Buck converter regulates the 40V to 60V variable input to a fixed 36V bus voltage. The second stage LLC converter convert the 36V to 12V by a 3:1 transformer. The whole solution achieves the fixed frequency control. The thesis focus on the detail design and optimization of LLC converter, especially its transformer. To have high density and high efficiency, the transformer design becomes critical at MHz frequency. The matrix transformer concept is applied and a merged winding structure is used for flux cancellation, which effectively reduces the AC winding losses. A new fully interleaved termination and via design is proposed. It achieves significant reduction in loss and leakage flux. In addition, to study the current sharing of parallel winding layers, a 1-D analytic model is proposed and a symmetrical winding layer scheme is used to balance the current distribution. The hardware is built and tested. The proposed two-stage converter achieves the best performance compared to the current market.ETDIn CopyrightLLC ConverterIntegrated MagneticsTransformer OptimizationIntermediate Bus ConverterOptimal Design of MHz LLC Converter for 48V Bus Converter ApplicationThesis