Rezaei Mojdehi, Ahmad2017-10-272017-10-272017-10-26vt_gsexam:12996http://hdl.handle.net/10919/79818In this dissertation, four distinct but in some ways related topics, mostly related to experimental and theoretical investigations of friction and adhesion of elastomeric materials, are presented. First, an experimental and theoretical study of the interaction between elastic beams and granular media under compressive loading is performed. Buckling loads of beams with different dimensions and boundary conditions within granular media of different depths and grain sizes are measured, and theoretically approximated using the Ritz energy approach, based on the concept of beam on an elastic foundation. Several nondimensional parameters and a scaling law are derived to characterize different interaction regimes between the beams and granular support. The findings from this work is believed to be helpful for improved understanding of interactions between elastic beams and surrounding elastic foundation with applications to piles, oil pipelines, and robotic needle insertion into soft tissues. Second, the role of axial compliance on the friction of extensible strips is investigated. Significant changes were observed in the static and kinetic friction of strips, when the effective axial compliance was changed. The underlying causes of the changes in the frictional response are explained and quantitatively predicted using an extended shear lag model. We believe that this study provides insights into the effect of axial compliance on the frictional response of materials, paving the way for design and optimization of systems where the static and kinetic friction forces play an important role. Third, the effect of normal force and rate on the kinetic friction of two different elastomers, namely acrylic and silicone-based elastomers is evaluated. A custom-built pendulum test setup was used to perform the friction test in dynamic conditions. Two substantially different responses with respect to the change in normal force were observed and the role of different contributions to the frictional response of viscoelastic materials, i.e. bulk hysteresis friction, adhesion friction, and cohesion friction, are discussed. Different scenarios such as modifying the surface by using graphite powder, reducing test velocity, and also performing drop tests to characterize the surface hysteresis of the elastomers, were considered to further explore the origin of frictional responses of the elastomers. This study could improve insights gained from Dynamic Mechanical Analysis (DMA) data when obtaining and interpreting the effect of normal force on kinetic COF of elastomers with potential applications to tires, shoes, etc. where friction plays an important role. Last, a generalized scaling law, based on the classical fracture mechanics approach, is developed to predict the bond strength of adhesive systems. The proposed scaling law, which depends on the rate of change of bond area with compliance, is in apparent discrepancy with the previously reported scaling relationship that depends on the ratio of area to compliance. This distinction can have a profound impact on the expected bond strength of systems, particularly when failure mechanism changes or the compliance of the load train is increased. Furthermore, the shear lag model is implemented to derive a closed-form relation for the system compliance and the conditions where the two models deviate from each other are discussed and demonstrated. The results obtained from this approach could lead to a better understanding of the relationship between the bond strength and the geometry and mechanical properties of adhesive systems, with applications to different types of adhesive joints such as bio-inspired adhesive, biomedical adhesive tapes, and structural adhesive joints.ETDIn CopyrightFrictionAdhesionElastomeric MaterialsShear Lag ModelPressure Sensitive AdhesivesFracture MechanicsExperimental and Theoretical Studies of Friction and Adhesion of Elastomeric MaterialsDissertation