Aguilar-Arevalo, A. A.Brown, B. C.Bugel, L.Cheng, G.Church, E. D.Conrad, Janet M.Dharmapalan, R.Djurcic, ZelimirFinley, D. A.Ford, R.Garcia, F. G.Garvey, G. T.Grange, J.Huelsnitz, W.Ignarra, C. M.Imlay, R.Johnson, R. A.Karagiorgi, Georgia S.Katori, T.Kobilarcik, T.Louis, W. C.Mariani, CamilloMarsh, W.Mills, G. B.Mirabal, J.Moore, C. D.Mousseau, J.Nienaber, P.Osmanov, B.Pavlovic, Z.Perevalov, D.Polly, C. C.Ray, H.Roe, B. P.Russell, A. D.Shaevitz, Marjorie HansenSpitz, JoshuaStancu, IonTayloe, R.Water, R. G. V. D.White, D. H.Wickremasinghe, D. A.Zeller, Geralyn P.Zimmerman, E. D.2018-01-102018-01-102014-07-11http://hdl.handle.net/10919/81658This paper explores the use of <i>L/E</i> oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, <i>L</i> is the distance of neutrino travel and <i>E</i> is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the <i>L/E</i> distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. In more detail, this paper also outlines how the <i>L/E</i> distributions can be best calculated and used for model comparisons. Specifically, the paper presents the <i>L/E</i> data points for the final MiniBooNE data samples and, in the Appendix, explains and corrects the mistaken analysis published by the ICARUS collaboration.application/pdfenIn Copyrighthep-exhep-phnucl-exUsing L/E Oscillation Probability DistributionsArticle - RefereedMariani, C [0000-0003-3284-4681]