Bakhsh Kelarestaghi, Kaveh2019-07-122019-07-122019-07-11vt_gsexam:21405http://hdl.handle.net/10919/91421Security threats to cyber-physical systems are targeting institutions and infrastructure around the world, and the frequency and severity of attacks are on the rise. Healthcare manufacturing, financial services, education, government, and transportation are among the industries that are the most lucrative targets for adversaries. Hacking is not just about companies, organizations, or banks; it also includes critical infrastructure. Wireless Sensors Networks, Vehicle-to-everything communication (V2X), Dynamic Message Signs (DMS), and Traffic Signal Controllers are among major Intelligent Transportation Systems (ITS) infrastructure that has already been attacked or remain vulnerable to hacking. ITS has been deployed with a focus on increasing efficiency and safety in the face of dramatic increases in travel demand. Although many studies have been performed and many security primitives have been proposed, there are significant concerns about flawless performance in a dynamic environment. A holistic security approach, in which all infrastructure performs within the satisfactory level of security remains undiscovered. Previously, hacking of road infrastructure was a rare event, however, in recent years, field devices such as DMS are hacked with higher frequency. The primary reason that transportation assets are vulnerable to cyber-attacks is due to their location. A more dramatic scenario occurs when hackers attempt to convey tampered instructions to the public. Analyzing traveler behavior in response to the hacked messages sign on the basis of empirical data is a vital step toward operating a secure and reliable transportation system. There may be room for improvement by policymakers and program managers when considering critical infrastructure vulnerabilities. With cybersecurity issues escalating every day, road users' safety has been neglected. This dissertation overcomes these challenges and contributes to the nascent but growing literature of Intelligent Transportation System (ITS) security impact-oriented risk assessment in threefold. • First, I employ a risk-based approach to conduct a threat assessment. This threat assessment performs a qualitative vulnerability-oriented threat analysis. The objective is to scrutinize safety, security, reliability, and operation issues that are prompted by a compromised Dynamic Message Signs (DMS). • Second, I examine the impact of drivers' attitudes and behaviors on compliance, route diversion behavior, and speed change behavior, under a compromised DMS. We aim to assess the determinants that are likely to contribute to drivers' compliance with forged information. To this extent, this dissertation evaluates drivers' behavior under different unauthentic messages to assess in-depth the impact of an adversarial attack on the transportation network. • Third, I evaluate distracted driving under different scenarios to assess the in-depth impact of an adversarial attack on the transportation network. To this extent, this dissertation examines factors that are contributing to the manual, visual, and cognitive distractions when drivers encountering fabricated advisory information at a compromised DMS. The results of this dissertation support the original hypothesis and indicate that with respect to the forged information drivers tend to (1) change their planned route, (2) become involved in distracting activities, and (3) change their choice speed at the presence of a compromised DMS. The main findings of this dissertation are outlined below: 1. The DMS security vulnerabilities and predisposing conditions allow adversaries to compromise ITS functionality. The risk-based approach of this study delivers the impact-likelihood matrix, which maps the adverse impacts of the threat events onto a meaningful, visual, matrix. DMS hacking adverse impacts can be categorized mainly as high-risk and medium-risk clusters. The safety, operational (i.e., monetary losses) and behavioral impacts are associated with a high-risk cluster. While the security, reliability, efficiency, and operational (i.e., congestion) impacts are associated with the medium-risk cluster. 2. Tech friendly drivers are more likely to change their route under a compromised DMS. At the same time, while they are acquiring new information, they need to lowering their speed to respond to the higher information load. Under realistic-fabricated information, about 65% of the subjects would depart from their current route. The results indicate that females and subjects with a higher driving experience are more likely to change their route. In addition, those subjects who are more sensitive to the DMS's traffic-related messages and those who use DMS under congested traffic condition are more likely to divert. Interestingly, individuals with lower education level, Asians, those who live in urban areas, and those with trouble finding their direction in new routes are less likely to pick another route rather the one they planned for. 3. Regardless of the DMS hacking scenarios, drivers would engage in at least one of the distractive activities. Among the distractive activities, cognitive distraction has the highest impact on the distracted driving likelihood. Meaning, there is a high chance that drivers think of something other than driving, look at surrounding traffic and scenery, or talk to other passengers regarding the forged information they saw on the DMS. Drivers who rely and trust in technology, and those who check traffic condition before starting their trips tend to become distracted. In addition, the result identified that at the presence of bogus information, drivers tend to slow down or stop in order to react to the DMS. That is, they would either (1) become involved in activities through the means of their phone, (2) they would mind wander, look around, and talk to a passenger about the sign, and (3) search for extra information by means of their vehicle's radio or internet. 4. Females, black individuals, subjects with a disability, older, and those with high trust in DMS are less likely to ignore the fabricated messages. In contrary, white, those who drive long hours, and those who see driving as a tedious task are more likely to ignore the bogus messages. Drivers who comply with traffic regulations and have a good driving record are likely to slow down under the tampered messages. Furthermore, female drivers and those who live in rural areas are more likely to slow down under fabricated advisory information. Furthermore, this dissertation identifies that planning for alternative route and involvement in distractive activities cause speed variation behaviors under the compromised DMS. This dissertation is the first to investigate the adverse impact of a compromised DMS on the road users and operators. I attempt to address the current gap in the literature by assessing and evaluating the impact of ITS security vulnerabilities. Broader impacts of this study include (1) to systematically raising awareness among policy-makers and engineers, (2) motivating further simulations and real-world experiments to investigate this matter further, (3) to systematically assessing the adverse impact of a security breach on transportation reliability and safety, and drivers' behavior, and (4) providing insights for system operators and decision-makers to prioritize the risk of a compromised DMS. Additionally, the outcome can be integrated with the nationwide connected vehicle and V2X implementations and security design.ETDIn CopyrightIntelligent Transportation SystemsCyber SecurityCyber-Physical SystemsVulnerability AssessmentAttack TreeDynamic Message SignRisk AssessmentImpact AssessmentTravelers BehaviorDistracted DrivingSpeed VariationRoute DivergenceA Risk Based Approach to Intelligent Transportation Systems SecurityDissertation