Rubenking, Samuel Kim2017-07-262017-07-262017-07-25vt_gsexam:12247http://hdl.handle.net/10919/78433The transition of flight from manned to unmanned systems has led to new research and applications of technology within the field that, until recently, were previously thought to be unfeasible. The industry has become interested in alternative control surfaces and uses for smart materials. A Macro Fiber Composite (MFC), a smart material, takes advantage of the piezoelectric effect and provides an attractive alternative actuator to servos in the Small Unmanned Aerial Systems (SUAS) regime of flight. This research looks to take MFC actuated control surfaces one step further by pulling inspiration from and avian flight. A dual mode control surface, created by applying two sets of two MFCs to patch of carbon fiber, can mimic the tip feathers of a bird. This actuator was modeled both using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Real-world static testing on a feather confirmed preliminary FEA results, and wind tunnel tests simulating assumed cruise conditions confirmed the feather would not exhibit any adverse structural behaviors, such as flutter or aeroelastic divergence. From its modeled performance on a wing using CFD, the MFC feather proved to be a success. It was able to produce a wing that, when compared to a traditional rectangular wing, yielded 73% less induced drag and generated proverse yaw. However, the MFC feathers alone, in the configuration tested, did not produce enough roll authority to feasibly control an aircraft.ETDIn CopyrightMacro Fiber CompositesProverse YawInduced DragArtificial FeatherSmart MaterialsDual Mode Macro Fiber Composite-Actuated Morphing Tip Feathers for Controlling Small Unmanned AircraftThesis