Greene, Clark Wayland2024-06-282024-06-282024-06-27vt_gsexam:40421https://hdl.handle.net/10919/119547The dynamics of successfully integrating science, technology/engineering and math content, practice, and delivery in K-12 education is still evolving. "A number of questions remain about the best methods by which to effectively teach engineering at the K-12 level and how they play into the integration of other STEM disciplines" (Moore, Glancy, Tank, Kersten, Smith, and Stohlmann, 2014). The International Technology and Engineering Educators Association (ITEEA) has declared that technology and engineering within STEM education as delivered by the technology education content area is defined by the Standards for Technological Literacy™ (ITEEA, 2000). Lack of applied technology/engineering pedagogical content knowledge via technology teacher collaboration may be excluding valuable contributions to more effective STEM teaching and learning. Absence of developed and identified perceptions resulting from such collaborations could be an impediment to application of valuable technology/engineering practices, beliefs, content, and structure within integrated STEM instruction. Collaboration inclusive of all STEM subject teachers is critical to effective practice and delivery of integrated STEM teaching. To achieve this, integrated STEM experiences need "to be researched and evaluated to build knowledge and understanding about the effectiveness of these experiences in promoting STEM learning and engagement within and across disciplines." (Honey et al., 2014). The purpose of this study was to examine and identify science, math, and technology education teacher perceptions of technology/engineering education influence within existing STEM collaborations. The objective was to provide useful information pertinent to further improving STEM education practice and effectiveness. A three round, mixed method, Delphi approach was employed to determine common perceptions among all STEM teachers included in this study. Consensus among study participants identified strategies specific to technology/engineering education that were perceived to positively impact STEM education. The results of this study illustrate that content, practice, and pedagogical attributes specific to technology education do exist and that those attributes are perceived to enhance student learning of STEM content and practice. Synthesized from initial qualitative responses in Round One, of the 28 presented technology/engineering strategies, 24 achieved consensus as determined by an applied two factor threshold of a 7.5 median agreement score and interquartile rating of 2.0 or less from among all participants. In a comparison of represented STEM subjects taught, there also appeared significant agreement among all groups. The level of agreement between science and the other groups was weakest, although still sizeable. Engineering design knowledge, skilled use of tools and materials to produce models and prototypes, promotion of designerly critical thinking and problem-solving skills, and both tacit and contextual knowledge of technology and engineering applications were found to be general themes specific to technology/engineering education teachers.ETDenIn CopyrightIntegrated STEM EducationCollaborative InstructionTechnology EducationSTEM TeachingInstructional Content and PracticeTeaching StrategiesPerceptions of Technology/Engineering Education Influence on Integrated STEM Teaching and LearningDissertation